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Abstract—A class of spatially looped time-domain algorithms is

developed. These algorithms prove to be effective tools for the

analysis of microwave periodic structures. They use the FDTD or
TLM simulation of only one spatial period, with a new type of
boundary condition modeling its behavior in the entire structure.
Applications to a sinusoidally corrugated slow wave structure

and to a four-wall corrugated waveguide are presented. The
paper includes a tutorial part, discussing the physical nature

of solutions produced by the spatially looped algorithms. This

explains the meaning of complex notation in the time domain,

and the possibility of reducing the calculations of uniform and
periodic guiding structures to real numbers.

I. INTRODUCTION

D URING the last decade, time-domain electromagnetic

simulation has become a popular tool among the mi-

crowave community. Its advantages include efficiency in pro-

viding circuit characteristics over a wide frequency band, as

well as flexibility in studying arbitrary geometries, inhomoge-

neous and anisotropic media, and transient processes. How-

ever, a 3-D time-domain analysis requires extensive computer

resources. Therefore, significant research effort is directed

toward exploiting various kinds of spatial symmetry and

regularity, in order to reduce the computing memory and time.

Let us recall that a more classical frequency-domain ap-

proach to the electromagnetic analysis originates from the

well-known separation of space and time variables. By ap-

plying the Fourier transform in time, the original problem is

projected into the frequency domain where (in the case of

linear circuits) solutions are sought for each value of frequency

separately, in terms of the three space variables.

Recently, an analog of this approach has been adapted

for the time-domain analysis of structures uniform along one

spatial dimension, such as transmission lines aligned with the
,z-axis. The z-variable can then be separated, and the Fourier

transform projects the physical z-domain into the phase shift-

domain (@,-domain), Electromagnetic simulation is conducted

as a function of two space variables and time, for each value

of ~Z separately. By eliminating one variable, savings in

computer resources of over an order of magnitude result. Such

an approach led to several algorithms reported in recent years,

such as the ones using complex notation in TLM [1], [2] and

FDTD [3], [4] or real notation in FDTD [5], [6] and TLM

[7], [8].
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Moreover, in [5] and [6], the above approach has also been

applied to several classes of microwave problems other than

uniform transmission lines, such as the full-wave analysis of

axisymmetrical circuits (with Fourier transform applied in the

qi-domain) or the characterization of E-plane waveguide dis-

continuities (with Fourier transform applied in the x-domain).

In this paper, we further elaborate on a method for analyzing

microwave circuits periodic along one spatial dimension. We

focus on periodic structures of propagation which play an

important role in microwave research and engineering, for

example, in ultrahigh power pulse generation [9] and in an-

tenna systems [10], [1 1]. When compared to uniform guiding

structures (UGS), the difficulty in analyzing periodic guiding

structures (PGS) stems from the fact that solutions in PGS

cannot be sought for each value of flz separately. Any mode

in a periodic structure with a fundamental phase constant ~ZO

comprises an infinite series of so-called space harmonics with

phase constants +~ZO + 2nln/L, where L is the length of one

period (Fig. 1) and m = 1, 2, . . ..

In Section II of this paper, we show that a rigorous anal-

ysis of PGS (taking into account the space harmonics) can

be conducted in the time domain, based on the FDTD or

TLM modeling of only one period of the structure. We

derive a special form of periodic boundary conditions which

“loop” the model. Further in the paper, we shall consider

the spatially looped FDTD algorithm as a reference, but

explanatory remarks concerning the TLM formulation will also

be given.

Traditionally, periodic structures have been treated in the

frequency domain [9], [1 1]. The spatially looped algorithms

of this paper maintain classical advantages of the time-domain

approach, and consequently they can be considered as an

interesting alternative in a range of applications to PGS.

This will be demonstrated by means of examples in Sec-

tion III. Here, let us only stress that the spatially looped

time-domain algorithms can be applied to PGS of arbitrary

shape and inhomogeneous filling, and that there are no prob-

lems with investigating higher passband modes in slow-wave

structures.

In Section IV, we provide physical insight into the field

distribution produced by the spatially looped algorithms. The

objective is to explain combined use of the time-domain and

phase shift-domain representation of electromagnetic fields.

Since analogous representation has been previously used for

UGS, our discussion reveals new (and somewhat surprising)

interpretations of the recent FDTD and TLM algorithms of

[1]-[8].
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Fig. 1. General periodic structure with period L.

II. DERIVATION OF SPATIALLY LOOPED ALGORITHMS

We refer to a general microwave structure, periodic with

respect to the z –coordinate (Fig. 1). We discretize one period

of this structure (xl < z < Z2) into basically cubicoid

cells; but in the zy–plane, we also use modified cells [12]

to improve the representation of curved geometries. Although

we can vary cell lengths along the z-axis, for simplicity let us

assume that Ax = const; we then require that L = (Z2– xl ) =
N Az where N is an integer.

Now we aim to define appropriate longitudinal boundary

conditions, modeling periodicity of the structure. This will lead

us to two versions of the spatially looped FDTD algorithm,

expressed in the complex and real notation, respectively.

A. Looped FDTD—Complex Version (CL-FDTD)

Assume that the structure of Fig. 1 supports a wave of

the fundamental propagation vector /3ZOiz. Then, according

to the Floquet theorem [13], the z-dependence of any field

component is given by function ~(.z)

f(z) = f’(z)e*~620z (1)

where ~’(z) is periodic with period L.
In the FDTD algorithms, we analyze fields as a function of

three space variables and time. In view of ( 1), for one traveling

wave we can express the fields as follows:

where functions EL (z, y, z, t) and 11~ (z, y, z, t) are real,

functions -EL(z, y, z, t) and 11~ (x, y, z, t) are imaginary,

and all functions E’(z, y, z, t) and@ (z, y, z, t) are periodic

with respect to the z-variable, with period L (Fig. 1), so that,

in particular,

E’(Z, y, Z2, t) = ~’(~, y, ~1>~)

H’(Z> g, .z~– Az/2, t) = H’($, y, ~1 – Az/’L t). (3)

Note that in (2), the time-domain representation of electro-

magnetic fields is maintained. Complex notation results from

applying the Fourier transform only in space, in the z-domain.
To take advantage of properties (2) and (3) in the FDTD

analysis of PGS, we must represent each field by a real and

imaginary component:

E(z, y, z, t) = E’(%, y, z, t) Cos ((L+ + w)
– jl?(x, g, z, t) sin (/3Z0.z+ p)

H(X, y, 2, t) = H’(Z, y, 2, t) Cos (fizoz + p)

– jH’(x, y, 2, t) sin (&O.z + p). (4)

Let us first assume that the medium filling the structure is

lossless and described by real functions C(Z, y, z), P($, y, z)

(extension to other media will be considered in Section IV).

The discretized Maxwell operators are real and linear, and

inside the model (z1 < z < 22 – A,z/2) the real and imaginary

components of (4) are decoupled. Thus, inside the model,

we conduct the FDTD simulation on the real and imaginary

grids independently, using standard 3-D FDTD equations. We

couple the two grids in planes separated by one period of the

structure, imposing the following boundary conditions for the

tangential E- and H-fields:

H~(z, y, z~ – Az/2, t+ At/2)

= ll~(q y, 22 – A2/2, t + At/2)e-~@ (5)

where ~ = (Z2 – Z1) ,8=0 = ~20L is the assumed fundamental

phase shift per period. entering the program as a parameter.

In the TLM formulation of our method, all incident and

reflected pulses i V, r V are represented by real and imaginary

components

V(Z, y, z, t) = iv’(z, y, 2, t) cm (/3.02 + p)

– j ‘V’($, y, z, t) sin (ii.~ + ff)

‘V(Z> y, z, t) = V’(Z, y, 2, t) cm (Pzoz + p)

– j ‘v’(z, y, z, t) sin (1’3~~z+ p) (6)

where functions r V’, i V’ are real and periodic with period

L. Within the model, scattering is performed on the real and

imaginary grids separately. The two grids are coupled by the

periodic boundary conditions

‘V(z, y, a, t) = ‘V(z, y, ZI, t)e-j$

‘V(z, y, .zI, t) = ‘V(Z, y, m, t)eJO. (7)

We first simulate wave propagation im the system with

the assumed phase shift ~, using pulse excitation. Fourier

analysis of the circuit’s response indicates all frequencies

for which the propagation is possible (that is, all the modes

which can propagate and give the assumed fundamental phase

shift per period). Subsequently, we can excite the circuit by

a sinusoidal signal of a particular frequency (applying the

excitation scheme of [7]), and when the steady state is reached,

we obtain field distribution for a particular mode.

In the case of uniform guiding structures E’ and Lf’ in (2)

and (4) do not depend on z, thus an arbitrary length of the

period L can be assumed. When choosing L = Az (N = 1),

we obtain the complex algorithms applied by Jin et al. in the

SCN TLM notation [1] and in FDTD [4], and by Arndt et al.

in FDTD [3].
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B. Looped FDTD—Real Version (RL-FDTD)

Let us consider a standing wave in the structure of Fig. 1.

From (2), the expressions for fields are as follows:

EL(X, y, 2, t) = E\(x, y, 2, t) Cos (pzoz + ~)

HL(T, y, ~, t) = ~~(z, Y, ~, ~) sin(pzo~ + 9)

~E.(z, y, z, t) = 13~(~, y, 2, t) sin (,l?ZOz+ p)

~~.(z, y, Z, t) = ~j($, y, z, t) cos (~..z + P). (8)

Periodic boundary conditions are modeled by spatial looping

of fields

El(z, y, Z2, t) = TE(*, p)~l(~> ?4>xl> 0

~~(z, y, ZI – Az/2, t+ At/2)

= TH(@, ~)~l(z, y, ZZ – Az/2, t+ At/2) (9)

with looping operators TE (~, p), TH (~, p) given by

Cos (~ + p)
T~(I#, ~) = cOS (~)

sin (p – 0.5@/N)
(lo)

‘H(4’ ‘) = sin (p + @ – 0.5@/lV) “

In the above relations, $ and N have the meaning as defined

for the complex version of the algorithm. Angle p allocates the

analyzed period of the structure with respect to the standing

wave waveform (see Fig. 6). Since calculations are limited to

the real grid, the RL-FDTD algorithms saves half of the com-

puter resources required by CL-FDTD, but it is numerically

less robust. Physically, this is associated .with numerical energy

fluctuations in the model which we demonstrate in Section IV.

Mathematically, calculations become unstable for values of@

and q such that lT~l > 1 or ITHI > 1.

Let us emphasize that there are no stability problems in our

previous real algorithms for the analysis of UGS in the FDTD

[5], [6] and SCN TLM [7], [8] versions. In fact, for single-

layer models of UGS, the RL-FDTD of this paper does not

reduce to the real FDTD algorithm of [5]. A basic difference

is that in [5]–[8] only the El and IfZ are considered on the

real grid, while the Ill and E. fields are on the imaginary

grid. This ensures that all field components are considered at

their maxima with respect to the z-coordinate, and numerical

energy in the model remains constant in time.

III. EXAMPLES OF APPLICATION

Our first example (Fig. 2) relates to a sinusoidally corrugated

slow wave structure recently studied by Guo et al. [9]. Taking

advantage of the axial symmetry of the problem, we use 2-D

modeling in terms of the Ep, Ez, and H@ field components,

as explained in [5] and [6]. Periodic boundary conditions

(5) are imposed for Ep and H@. We set a basic cell size
to Ax = Ay = 0.835 mm. Thus, the model consists of

350 cells, including modified cells [12] which match the

sinusoidal boundary. Computer storage requirements for the

complex and real versions of the looped 2-D FDTD are 6 and

3 real variables per cell, respectively. The computing time

on a PC 486 per one value of ~=0 (producing resonances

25

20

5

n
“o 1 2 3

Phase shift per period (~L)

Fig. 2. Slow wave structure after [9] and its dispersion characteristics:
● : measurements [9], —: calculations [9], –X –: present algorithms; Rmin =

1.397 cm, R m.. = 1.943 cm, L = 1.67 cm.

in all considered passbands simultaneously) is about 30 s

for CL-FDTD and 15 s for RL-FDTD. Typically, results of

CL-FDTD and RL-FDTD are indistinguishable. We find it

advisable to establish cutoff frequencies by CL-FDTD and to

use RL-FDTD for detailed plotting of the characteristics.

As shown in Fig. 2, for the first three passbands of the

axisymmetric TM mode, we obtain results in perfect agreement

with the numerical and experimental data of [9]. For higher

passbands, no reference has been given in [9], and difficulties

in distinguishing the characteristics have been reported. Our

method immediately provides these characteristics. Note that

the TMO(4) and TMO(5) curves are close to each other, and

almost perpendicular to the frequency axis. This explains why

they are difficult to distinguish, when classically plotted as a

function of frequency [9]. In our modeling results are sought

versus phase shift. Thus, the structure resonates at one specific

frequency in each passband, and a point on the dispersion

characteristics is determined without ambiguity. Moreover, the

field distribution can be monitored for any values of phase shift

and frequency which facilitates correct naming of the modes.

Our second example concerns a four-wall corrugated wave-

guide (Fig. 3). We consider “odd-odd” modes generated by

TEm. and TMm. of the smooth-walled guide with m, n odd.

Thus, we can model one quadrant of one period. We set Az =

0.25 mm, AZ = Ay = 0.5 mm, which gives 2640 cells. In 3-D

modeling, each cell is described by 12 and 6 real variables in

CL-FDTD and RL-FDTD, respectively. The computing time

per one value of /3Z0 is about 15 min. for CL-FDTD and 8

min. for RL-FDTD.

Results of our method are in good agreement with the

mode-matching after [11 ], as we show in Fig. 6. In [14], we

have reported the agreement for the “odd-even” modes. A

basic advantage of our method over mode-matching resides

in its flexibility: structures with arbitrary (also continuous)

variation of shape in the z-direction and with inhomogeneous
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Fig. 3. Four-wall corrugated waveguide after [11] and chspersion character-
istics for the “odd-odd’ modes. —: results of [11], ● : present algorithms;
A = 33.02 mm, a = 22,86 mm, H = 20,32 mm, H = 10. I6 mm, L =

1.01 mm, t = 1 mm.

t=tj t= T/4

REAL GRID

H@

EP

1MAGINAR% GRID

Fig. 4. Field distribution excited through real H+ at point P in Fig, 2; f =
7.717 GHz, v = n/3.

and anisotropic filling are analyzed without any modification

of the computer code.

IV. PHYSICAL INTERPRETATIONS

In this section, we explain the consequences of the combined

time-domain/phase shift-domain represenwtion of electromag-

netic fields. Such a representation is inherent in the spatially

looped algorithms of this paper and in previous algorithms

[ 1]–[8] for the analysis of UGS. We shall refer to the si-

nusoidally corrugated structure of Fig. 2. We consider field

distribution for the dominant TMO(l) mode at j = 7.717 GHz,

~ = 11/3 over one-half of the long-section of one period.

A. Eigensolutions of Complex Looped Algorithms

We apply sinusoidal excitation to a single field compo-

nent—real H@ at point P in Fig. 2. The distributions of

EP and Ho on the real grid are presented in Fig. 4. It is

clearly a standing wave pattern. This may seem surprising

since we have forced a phase shift $>0 corresponding to the

propagation vector /?.oiz directed from left to right. Insight

into the method brings the explanation: when the complex

notation is applied to close the spatial 1oop, the sinusoidal

waveforms due to the sin (tit) source decompose into w and

– w spectral components. We obtain two traveling waves of

phase velocities u = w/~zO and v = –w/,b’=O, and of equal

amplitudes. Their superposition produces a standing wave.

In the condensed node TLM formulation of the method,

a basic way to apply the excitation is by a train of real

pulses incident from an elementary transml~ssion line at P. This

evokes two standing waves since a pulse couples to both E-

and H-field at P. Either one or both these fields are transversal.

Therefore, superposition of the two waves is:

● a purely standing wave if the excitation line is perpen-

dicular to the z-axis,

● a partially standing wave if the excitation line is parallel

to the z-axis.

Intuitively, the notion of “a traveling wave resonator” has

been proposed by Jin et al. [1] for a single-layer model of

UGS described in the complex TLM notation. In view of the

above discussion, we propose to use the name of “a periodic

boundary resonator” as more appropriate.

B. Extension of Looped Algorithms to Media

Described by Complex Parameters

Many practical media are described by complex parameters

in the frequency domain, for example, # = u’ + jfl”. At first

sight, it seems that complex parameters can be incorporated

into the complex looped algorithms by coupling of the real and

imaginary grids within the model. We shall briefly explain why

this approach is physically incorrect.

Referring to the time-domain representation of fields, V“

plays the role of a proportionality coefficient between the time-

sinusoidal component of the H-field and time-cosinusoidal

component of the B-field (or vice-versa) at the same point

in space, Yet in Fig. 4 we observe that the Hd waveforms

emulated by CL-FDTD on the real and imaginary grids are

in phase in time. Moreover, they correspond to two different

locations in space, shifted by one-quarter of the fundamental

wavelength, as predicted by (4). The spatial ortbogonality of

the two grids in the complex time-domain algorithms is best

seen for UGS where (4) simplifies to

H(X, y, z, t) = H’(z, g, t)[cm(pz~ + v)

–jsin(/3Zz + p)]. (11)

Complex media parameters and losses can be considered in the

spatially looped time-domain algorithms only indirectly, in a

way previously established for UGS [1], [2], [8]. In [81, we

have shown that the indirect approach applies to the algorithms

expressed in the real as well as complex notation.

C. Emulation of a Traveling Wave in

Complex Looped Algorithms

We apply sinusoidal excitation to the real component of the
H. field at P and cosinusoidal excitation to the imaszinarv
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HO

E.

t=o t= T14

REAL GRID

Fig. 5. Field distribution invoked through sinusoidal excitation of real H@

and cosinusoidal excitation of imaginary H@ at P in Fig. 2; j’ = 7,717 GHz,

* = rI/3.

component of H+ also at P. We shall call this “double

orthogonal excitation” since it evokes two standing waves

orthogonal in time and [in view of the preceding remarks.

i.e., equations (4) and (11 )] also in space. Their superposition

is a traveling wave, as shown in Fig. 5.

In the complex looped TLM algorithms, we can also emulate

a traveling wave by means of double orthogonal excitation,

that is, by simultaneously applying a sinusoidally modulated

train of real pulses and a cosinusoidally modulated train of

imaginary pulses to the same node, through the same line.

Double orthogonal excitation requires longer computing

time to converge to the steady state than the excitation by

a single sinusoidal source. For tutorial purposes, it provides

visualization of field intensities in PGS in the traveling wave

regime, and it simplifies the study of power flow.

D. Properties of the RL-FDTD Algorithm

In RL-FDTD, the analysis is reduced to one standing wave,

with nodes unambiguously located by parameter p of (8), as

shown in Fig. 6. In case of Fig. 6(b), the H$ node coincides

with point P, and the H4 excitation at P becomes ineffective.

To evoke the wave of Fig. 6(b), the source had to be shifted by

a few cells. Such constraints do not exist in CL-FDTD, where

the maximum of the standing wave automatically adjusts to

the position of the source.

The RL-FDTD model is susceptible to large energy fluc-

tuations. At t = O, total energy of the model of Fig. 6(b) is

contained in a section of the H4 standing wave near its node;

then it increases, and at t = T/4 itcorresponds to EP near

its maximum (plus minor energy due to E.). In CL-FDTD,

energy remains constant in time since it can circulate between

the two space-orthogonal grids.

V. CONCLUSION

We have introduced a class of spatially looped algorithms in

the time domain. These algorithms are effective and accurate

t=o t= T14

Ha E,

(a) (b)

Fig. 6. Field distribution in the structure of Fig. 2 at ~ = 7.717 GHz,

@ = lT/3 as produced by RL-FDTD for (a) p = O and (b) Y = 0.9 x H/3.

tools for the analysis of microwave periodic structures of

arbitrary shape and inhomogeneous filling. They use the FDTD

of TLM simulation of only one period of the structure,

closing the loop between the longitudinal boundaries by means

of periodic boundary conditions derived from the Floquet

theorem. Dispersion characteristics are plotted as a function

of phase shift per period. This ensures noteworthy precision

for slow wave characteristics which are almost perpendicular

to the frequency axis. With the use of excitation of [7],

the looped algorithms produce unperturbed distribution of

electromagnetic fields for any mode in a periodic structure,

at any frequency.

The spatially looped time-domain algorithms can be ex-

pressed in either complex or real notation. The real version

requires 5070 less computer resources. However, in application

to periodic structures, the complex version is numerically more

robust; operating the real version requires some expertise on

the user’s side. In application to single-layer models of uniform

guiding structures, the real FDTD and TLM versions fully

equivalent to the complex ones exist.

We have reached a number of original conclusions which

concern the excitation of standing and traveling waves in

the looped algorithms, and phase relationships between field

components on the real and imaginary grid. These illustrate

why the complex notation in the time domain cannot directly

incorporate complex media parameters, and how it facilitates

the numerical energy conservation. We hope that the reader

will find our study helpful in understanding the consequences

of the combined time-domainlphase shift-domain representa-

tion

[1]

[2]

of electromagnetic fields.
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