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Spatially Looped Algorithms for Time-Domain
Analysis of Periodic Structures
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Abstract—A class of spatially looped time-domain algorithms is
developed. These algorithms prove to be effective tools for the
analysis of microwave periodic structures. They use the FDTD or
TLM simulation of only one spatial period, with a new type of
boundary condition modeling its behavior in the entire structure.
Applications to a sinusoidally corrugated slow wave structure
and to a four-wall corrugated waveguide are presented. The
paper includes a tutorial part, discussing the physical nature
of solutions produced by the spatially looped algorithms. This
explains the meaning of complex notation in the time domain,
and the possibility of reducing the calculations of uniform and
periodic guiding structures to real numbers.

1. INTRODUCTION

URING the last decade, time-domain electromagnetic
simulation has become a popular tool among the mi-
crowave community. Its advantages include efficiency in pro-
viding circuit characteristics over a wide frequency band, as
well as flexibility in studying arbitrary geometries, inhomoge-
neous and anisotropic media, and transient processes. How-
ever, a 3-D time-domain analysis requires extensive computer
resources. Therefore, significant research effort is directed
toward exploiting various kinds of spatial symmetry and
regularity, in order to reduce the computing memory and time.
Let us recall that a more classical frequency-domain ap-
proach to the electromagnetic analysis originates from the
well-known separation of space and time variables. By ap-
plying the Fourier transform in time, the original problem is
projected into the frequency domain where (in the case of
linear circuits) solutions are sought for each value of frequency
separately, in terms of the three space variables.

Recently, an analog of this approach has been adapted
for the time-domain analysis of structures uniform along one
spatial dimension, such as transmission lines aligned with the
z-axis. The z-variable can then be separated, and the Fourier
transform projects the physical z-domain into the phase shift-
domain (3;-domain). Electromagnetic simulation is conducted
as a function of two space variables and time, for each value
of 3, separately. By eliminating one variable, savings in
computer resources of over an order of magnitude result. Such
an approach led to several algorithms reported in recent years,
such as the ones using complex notation in TLM [1], [2] and
FDTD [3], [4] or real notation in FDTD [5], [6] and TLM
(71, [8].
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Moreover, in [5] and [6], the above approach has also been
applied to several classes of microwave problems other than
uniform transmission lines, such as the full-wave analysis of
axisymmetrical circuits (with Fourier transform applied in the
¢-domain) or the characterization of E-plane waveguide dis-
continuities (with Fourier transform applied in the z-domain).

In this paper, we further elaborate on a method for analyzing
microwave circuits periodic along one spatial dimension. We
focus on periodic structures of propagation which play an
important role in microwave research and engineering, for
example, in ultrahigh power pulse generation [9] and in an-
tenna systems [10], [11]. When compared to uniform guiding
structures (UGS), the difficulty in analyzing periodic guiding
structures (PGS) stems from the fact that solutions in PGS
cannot be sought for each value of 3, separately. Any mode
in a periodic structure with a fundamental phase constant 3,
comprises an infinite series of so-called space harmonics with
phase constants +/3,, & 2mn /L, where L is the length of one
period (Fig. 1) and m =1, 2,---.

In Section II of this paper, we show that a rigorous anal-
ysis of PGS (taking into account the space harmonics) can
be conducted in the time domain, based on the FDTD or
TLM modeling of only one period of the structure. We
derive a special form of periodic boundary conditions which
“loop” the model. Further in the paper, we shall consider
the spatially looped FDTD algorithm as a reference, but
explanatory remarks concerning the TLM formulation will also
be given.

Traditionally, periodic structures have been treated in the
frequency domain [9], [11]. The spatially looped algorithms
of this paper maintain classical advantages of the time-domain
approach, and consequently they can be considered as an
interesting alternative in a range of applications to PGS.
This will be demonstrated by means of examples in Sec-
tion IH. Here, let us only stress that the spatially looped
time-domain algorithms can be applied to PGS of arbitrary
shape and inhomogeneous filling, and that there are no prob-
lems with investigating higher passband modes in slow-wave
structures.

In Section IV. we provide physical insight into the field
distribution produced by the spatially looped algorithms. The
objective is to explain combined use of the time-domain and
phase shift-domain representation of electromagnetic fields.
Since analogous representation has been previously used for
UGS, our discussion reveals new (and somewhat surprising)
interpretations of the recent FDTD and TLM algorithms of

(18]
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Fig. 1. General periodic structure with period L.

I1. DERIVATION OF SPATIALLY LOOPED ALGORITHMS

We refer to a general microwave structure, periodic with
respect to the z—coordinate (Fig. 1). We discretize one period
of this structure (27 < z < 2z3) into basically cubicoid
cells; but in the zy—plane, we also use modified cells [12]
to improve the representation of curved geometries. Although
we can vary cell lengths along the z-axis, for simplicity let us
assume that Az = const; we then require that L = (z90—21) =
N Az where N is an integer.

Now we aim to define appropriate longitudinal boundary
conditions, modeling periodicity of the structure. This will lead
us to two versions of the spatially looped FDTD algorithm,
expressed in the complex and real notation, respectively.

A. Looped FDTD—Complex Version (CL-FDTD)

Assume that the structure of Fig. 1 supports a wave of
the fundamental propagation vector 3,,iz. Then, according
to the Floquet theorem [13], the z-dependence of any field
component is given by function f(z)

f(2) = f(2)eX# 207 (1)

where f'(z) is periodic with period L.

In the FDTD algorithms, we analyze fields as a function of
three space variables and time. In view of (1), for one traveling
wave we can express the fields as follows:

E(;IZ’ Y, z t) = El(l'7 Y, 2, t)e_j(ﬂzoZ-Hp)
H(x’ Y, 2, t) = H/(;(;’ Y, 2, t)e"J(ﬁzoz-i-lp) )

where functions E’| (z, y, 2, t) and H', (2, y, z, t) are real,
functions E’(z, y, #, t) and H.(z, y, 2, t) are imaginary,
and all functions E'(x, y, 2, t) and H' (1, y, 2, t) are periodic
with respect to the z-variable, with period L (Fig. 1), so that,
in particular,

El($7 Y, z2, t) = EI($7 Y, z1, t)

H'(z,y, 20 - Az/2,t) = H (z, y, 21 — Az/2,1).  (3)

Note that in (2), the time-domain representation of electro-
magnetic fields is maintained. Complex notation results from
applying the Fourier transform only in space, in the z-domain.

To take advantage of properties (2) and (3) in the FDTD
analysis of PGS, we must represent each field by a real and
imaginary component:

E(z,y, 2, t) = FE' (2, y, 2, t)cos (8202 + ©)
— iE (z, y, z, t)sin (Bz02 + )

H(z,y,2,t) = H'(z,y, 2, t)cos (f.0z + @)
— JH (. y, 2, 1) sin B0z +0). (D)

Let us first assume that the medium filling the structure is
lossless and described by real functions e(z, y, 2), p(z. y, z)
(extension to other media will be considered in Section IV).
The discretized Maxwell operators are real and linear, and
inside the model (z; < z < 22— Az/2) the real and imaginary
components of (4) are decoupled. Thus, inside the model,
we conduct the FDTD simulation on the real and imaginary
grids independently, using standard 3-D FDTD equations. We
couple the two grids in planes separated by one period of the
structure, imposing the following boundary conditions for the
tangential F- and H-fields:

EJ—(‘E7 Y. %2, t) = EJ_('Ta Y, 21, t)eﬂlj

H,)(z,y, 21 — Az/2, t + At/2)
= HJ_(ZU, Y, 29 — AZ/2, t+ At/?)e_ﬂ/f (5)

where ©) = (22 — 21) B:0 = B0l is the assumed fundamental
phase shift per period. entering the program as a parameter.

In the TLM formulation of our method, all incident and
reflected pulses ‘V, "V are represented by real and imaginary
components

Wiz, y, 2, t) = V'(z, y, 2, t) cos (Br0z + )

— 'V (w, y, 2, t)sin(B.oz + )
V(z,y, z, t) ="V'(z, y, 2, t) cos (B.o2 + @)

- .j rv/($7 y7 Z’ t) Sin (/B;OZ + (p) (6)

where functions "V’, V' are real and periodic with period
L. Within the model, scattering is performed on the real and
imaginary grids separately. The two grids are coupled by the
periodic boundary conditions

iv(x’ Y, 22, t) = rv(w7 Y, 21, t)e—ﬁ/’
iV(x, y, 21, t) = "V(z, y, 22, t)el?. (7N

We first simulate wave propagation in the system with
the assumed phase shift ), using pulse excitation. Fourier
analysis of the circuit’s response indicates all frequencies
for which the propagation is possible (that is, all the modes
which can propagate and give the assumed fundamental phase
shift per period). Subsequently, we can excite the circuit by
a sinusoidal signal of a particular frequency (applying the
excitation scheme of [7]), and when the steady state is reached.
we obtain field distribution for a particular mode.

In the case of uniform guiding structures E’ and H' in (2)
and (4) do not depend on z, thus an arbitrary length of the
period L can be assumed. When choosing L = Az (N = 1),
we obtain the complex algorithms applied by Jin et al. in the
SCN TLM notation [1] and in FDTD [4], and by Arndt ef al.
in FDTD [3].
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B. Looped FDTD—Real Version (RL-FDTD)
Let us consider a standing wave in the structure of Fig. 1.
From (2), the expressions for fields are as follows:
E (2, y, 2 t) = E\ (2, y, 2, t)cos B0z + ¢)
H, (2, y,2t)=H\(z,y, 2 t)sin(f.02 + )
“E (z,y, 2, t) = E.(z, y, 2, 1) sin (8,02 + )
cH (z,y, 2, t) = H.(x, y, 2, t) cos (B.oz + ©). (8)

Periodic boundary conditions are modeled by spatial looping
of fields

EJ_(Iv Yy, z2, t) = TE("/}7 @)EL(LU) Y, 21, t)

H(z,y, 21— Az/2, 1+ At/2)
- TH(’l/"a (p)HJ_(‘T7 Y, 22 — AZ/Q, t+ At/Q) (9)

with looping operators T(1), ¢), Ty (1, ¢) given by

56, ) = L)
Tu(y, o) = sin (o — 0.5¢/N) (10)

sin (¢ + ¢ — 0.5¢/N)’

In the above relations, 1 and N have the meaning as defined
for the complex version of the algorithm. Angle ¢ allocates the
analyzed period of the structure with respect to the standing
wave waveform (see Fig. 6). Since calculations are limited to
the real grid, the RL-FDTD algorithms saves half of the com-
puter resources required by CL-FDTD, but it is numerically
less robust. Physically, this is associated.with numerical energy
fluctnations in the model which we demonstrate in Section IV.
Mathematically, calculations become unstable for values of
and ¢ such that [Tg| > 1 or |Tu| > 1.

Let us emphasize that there are no stability problems in our
previous real algorithms for the analysis of UGS in the FDTD
[5]1, [6] and SCN TLM [7], [8] versions. In fact, for single-
layer models of UGS, the RL-FDTD of this paper does not
reduce to the real FDTD algorithm of [5]. A basic difference
is that in [5]-[8] only the E | and H, are considered on the
real grid, while the H | "and F, fields are on the imaginary
grid. This ensures that all field components are considered at
their maxima with respect to the z-coordinate, and numerical
energy in the model remains constant in time.

ITI. EXAMPLES OF APPLICATION

Our first example (Fig. 2) relates to a sinusoidally corrugated
slow wave structure recently studied by Guo er al. [9]. Taking
advantage of the axial symmetry of the problem, we use 2-D
modeling in terms of the £,, I/,, and H, field components,
as explained in [5] and [6]. Periodic boundary conditions
(5) are imposed for £, and H,. We set a basic cell size
to Az = Ay = 0.835 mm. Thus, the model consists of
350 cells, including modified cells [12] which match the
sinusoidal boundary. Computer storage requitements for the
complex and real versions of the looped 2-D FDTD are 6 and
3 real variables per cell, respectively. The computing time
on a PC 486 per one value of (., (producing resonances

25
20 |

15 |

10 |

Frequency f (GHz)

Phase shift per period (BL)

Fig. 2. Slow wave structure after [9] and its dispersion characteristics:

o measurements [9], : calculations [9], —x—: present algorithms; Ry, =
1.397 cm, Rmax = 1.943 cm, L = 1.67 cm.

in all considered passbands simultaneously) is about 30 s
for CL-FDTD and 15 s for RL-FDTD. Typically, results of
CL-FDTD and RL-FDTD are indistinguishable. We find it
advisable to establish cutoff frequencies by CL-FDTD and to
use RL-FDTD for detailed plotting of the characteristics.

As shown in Fig. 2, for the first three passbands of the
axisymmetric TM mode, we obtain results in perfect agreement
with the numerical and experimental data of [9]. For higher
passbands, no reference has been given in [9], and difficulties
in distinguishing the characteristics have been reported. Our
method immediately provides these characteristics. Note that
the TMo(4) and TMg(5) curves are close to each other, and
almost perpendicular to the frequency axis. This explains why
they are difficult to distinguish, when classically plotted as a
function of frequency [9]. In our modeling results are sought
versus phase shift. Thus, the structure resonates at one specific
frequency in each passband, and a point on the dispersion
characteristics is determined without ambiguity. Moreover, the
field distribution can be monitored for any values of phase shift
and frequency which facilitates correct naming of the modes.

Our second example concerns a four-wall corrugated wave-
guide (Fig. 3). We consider “odd-odd” modes generated by
TE,.. and TM,,,,, of the smooth-walled guide with m, n odd.
Thus, we can model one quadrant of one period. We set Az =
0.25 mm, Az = Ay = 0.5 mm, which gives 2640 cells. In 3-D
modeling, each cell is described by 12 and 6 real variables in
CL-FDTD and RL-FDTD, respectively. The computing time
per one value of 3,, is about 15 min. for CL-FDTD and 8
min. for RL-FDTD.

Results of our method are in good agreement with the
mode-matching after [11], as we show in Fig. 6. In [14], we
have reported the agreement for the “odd-even” modes. A
basic advantage of our method over mode-matching resides
in its flexibility: structures with arbitrary (also continuous)
variation of shape in the z-direction and with inhomogeneous
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Fig. 3. Four-wall corrugated waveguide after [11] and dispersion character-
istics for the “odd-odd™ modes. ——: results of [11], e: present algorithms;

A = 3302 mm, ¢ = 22.86 mm, H = 2032 mm, H = 10.16 mm, L =
1.0I mm, ! = 1 mm.
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Fig. 4. Field distribution excited through real H, at pownt PP in Fig. 2; f =
7.717 GHz, v = 11/3.

and anisotropic filling are analyzed without any modification
of the computer code.

IV. PHYSICAL INTERPRETATIONS

In this section, we explain the consequences of the combined
time-domain/phase shift-domain representation of electromag-
netic fields. Such a representation is inherent in the spatially
looped algorithms of this paper and in previous algorithms
[1]-[8] for the analysis of UGS. We shall refer to the si-
nusoidally corrugated structure of Fig. 2. We consider field
distribution for the dominant TMy;y mode at f = 7.717 GHz,
3 = 11/3 over one-half of the long-section of one period.

A. Eigensolutions of Complex Looped Algorithms

We apply sinusoidal excitation to a single field compo-
nent—real H, at point P in Fig. 2. The distributions of
E, and Hy on the real grid are presented in Fig. 4. It is
clearly a standing wave pattern. This may seem surprising

since we have forced a phase shift 1) > 0 corresponding to the
propagation vector 3.,i, directed from left to right. Insight
into the method brings the explanation: when the complex
notation is applied to close the spatial loop, the sinusoidal
waveforms due to the sin (wt) source decompose into w and
—w spectral components. We obtain two traveling waves of
phase velocities v = w/8,, and v = —w/f,,, and of equal
amplitudes. Their superposition produces a standing wave.

In the condensed node TLM formulation of the method,
a basic way to apply the excitation is by a train of real
pulses incident from an elementary transmission line at P. This
evokes two standing waves since a pulse couples to both E-
and H-field at P. Either one or both these fields are transversal.
Therefore, superposition of the two waves is:

« a purely standing wave if the excitation line is perpen-

dicular to the z-axis,

* a partially standing wave if the excitation line is parallel

to the z-axis.

Intuitively, the notion of “a traveling wave resonator” has
been proposed by Jin et al. [1] for a single-layer model of
UGS described in the complex TLM notation. In view of the
above discussion, we propose to use the name of “a periodic
boundary resonator” as more appropriate.

B. Extension of Looped Algorithms to Media
Described by Complex Parameters

Many practical media are described by complex parameters
in the frequency domain, for example, p = u' + ju'’. At first
sight, it seems that complex parameters can be incorporated
into the complex looped algorithms by coupling of the real and
imaginary grids within the model. We shall briefly explain why
this approach is physically incorrect.

Referring to the time-domain representation of fields, u”
plays the role of a proportionality coefficient between the time-
sinusoidal component of the H-field and time-cosinusoidal
component of the B-field (or vice-versa) at the same point
in space. Yet in Fig. 4 we observe that the H,; waveforms
emulated by CL-FDTD on the real and imaginary grids are
in phase in time. Moreover, they correspond to two different
locations in space, shifted by one-quarter of the fundamental
wavelength, as predicted by (4). The spatial orthogonality of
the two grids in the complex time-domain algorithms is best
seen for UGS where (4) simplifies to

H(.Z’, Yy, 2, t) = Hl(l’, Yy, f)[COS (ﬂzz + (p)

—jsin(B.z + ). (11)

Complex media parameters and losses can be considered in the
spatially looped time-domain algorithms only indirectly, in a
way previously established for UGS [1], [2], [8]. In [8], we
have shown that the indirect approach applies to the algorithms
expressed in the real as well as complex notation.

C. Emulation of a Traveling Wave in
Complex Looped Algorithms

We apply sinusoidal excitation to the real component of the
H, field at P and cosinusoidal excitation to the imaginary
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Fig. 5. Field distribution invoked through sinusoidal excitation of real Hy
and cosinusoidal excitation of imaginary Hg at P in Fig. 2; f = 7.717 GHz,
Yy = II/3.

component of Hy also at . We shall call this “double
orthogonal excitation” since it evokes two standing waves
orthogonal in time and [in view of the preceding remarks.
i.e., equations (4) and (11)] also in space. Their superposition
is a traveling wave, as shown in Fig. 5.

In the complex looped TLM algorithms, we can also emulate
a traveling wave by means of double orthogonal excitation,
that is, by simultaneously applying a sinusoidally modulated
train of real pulses and a cosinusoidally modulated train of
imaginary pulses to the same node, through the same line.

Double orthogonal excitation requires longer computing
time to converge to the steady state than the excitation by
a single sinusoidal source. For tutorial purposes, it provides
visualization of field intensities in PGS in the traveling wave
regime, and it simplifies the study of power flow.

D. Properties of the RL-FDTD Algorithm

In RL-FDTD, the analysis is reduced to one standing wave,
with nodes unambiguously located by parameter ¢ of (8), as
shown in Fig. 6. In case of Fig. 6(b), the H node coincides
with point P, and the Hy excitation at P becomes ineffective.
To evoke the wave of Fig. 6(b), the source had to be shifted by
a few cells. Such constraints do not exist in CL-FDTD, where
the maximum of the standing wave automatically adjusts to
the position of the soutce.

The RL-FDTD model is susceptible to large energy fluc-
tuations. At ¢ = 0, total energy of the model of Fig. 6(b) is
contained in a section of the Hy standing wave ncar its node;
then it increases, and at ¢ = T/4 it corresponds to E, near
its maximum (plus minor energy due to E,). In CL-FDTD,
energy remains constant in time since it can circulate between
the two space-orthogonal grids.

V. CONCLUSION

We have introduced a class of spatially looped algorithms in
the time domain. These algorithms are effective and accurate

S
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Q'OO

=

'0
2
o
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Fig. 6. Field distribution in the structure of Fig. 2 at f = 7.717 GHz,
¥ = II/3 as produced by RL-FDTD for (a) ¢ = 0 and (b) ¢ = 0.9 x II/3.

tools for the analysis of microwave periodic structures of
arbitrary shape and inhomogeneous filling. They use the FDTD
of TLM simulation of only one period of the structure,
closing the loop between the longitudinal boundaries by means .
of periodic boundary conditions derived from the Floquet
theorem. Dispersion characteristics are plotted as a function
of phase shift per period. This ensures noteworthy precision
for slow wave characteristics which are almost perpendicular
to the frequency axis. With the use of excitation of [7],
the looped algorithms produce unperturbed distribution of
electromagnetic fields for any mode in a periodic structure,
at any frequency.

The spatially looped time-domain algorithms can be ex-
pressed in either complex or real notation. The real version
requires 50% less computer resources. However, in application
to periodic structures, the complex version is numerically more
robust; operating the real version requires some expertise on
the user’s side. In application to single-layer models of uniform
guiding structures, the real FDTD and TLM versions fully
equivalent to the complex ones exist.

We have reached a number of original conclusions which
concern the excitation of standing and traveling waves in
the looped algorithms, and phase relationships between field
components on the real and imaginary grid. These illustrate
why the complex notation in the time domain cannot directly
incorporate complex media parameters, and how it facilitates
the numerical energy conservation. We hope that the reader
will find our study helpful in understanding the consequences
of the combined time-domain/phase shift-domain representa-
tion of electromagnetic fields.
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